Wednesday, January 19, 2011

Plasma Display Working


A plasma display panel (PDP) is a type of flat panel display common to large TV displays (80 cm/30 in or larger). They are called "plasma" displays because the pixels rely on plasma cells, or what are in essence chambers more commonly


A plasma display panel (PDP) is a type of flat panel display common to large TV displays (80 cm/30 in or larger). They are called "plasma" displays because the pixels rely on plasma cells, or what are in essence chambers more commonly known as fluorescent lamps. A panel typically has millions of tiny cells in compartmentalized space between two panels of glass. These compartments, or "bulbs" or "cells", hold a mixture of noble gases and a minuscule amount of mercury. Just as in the fluorescent lamps over an office desk, when the mercury is vaporized and a voltage is applied across the cell, the gas in the cells form a plasma. With flow of electricity (electrons), some of the electrons strike mercury particles as the electrons move through the plasma, momentarily increasing the energy level of the molecule until the excess energy is shed. Mercury sheds the energy as ultraviolet (UV) photons. The UV photons then strike phosphor that is painted on the inside of the cell. When the UV photon strikes a phosphor molecule, it momentarily raises the energy level of an outer orbit electron in the phosphor molecule, moving the electron from a stable to an unstable state; the electron then sheds the excess energy as a photon at a lower energy level than UV light; the lower energy photons are mostly in the infrared range but about 40% are in the visible light range. Thus the input energy is shed as mostly heat (infrared) but also as visible light. Depending on the phosphors used, different colors of visible light can be achieved. Each pixel in a plasma display is made up of three cells comprising the primary colors of visible light. Varying the voltage of the signals to the cells thus allows different perceived colors.
Plasma displays should not be confused with liquid crystal displays (LCDs), another lightweight flat-screen display using very different technology. LCDs may use one or two large fluorescent lamps as a backlight source, but the different colors are controlled by LCD units, which in effect behave as gates that allow or block the passage of light from the backlight to red, green, or blue paint on the front of the LCD panel.













For the past 75 years, the vast majority of televisions have been built around the same technology: the cathode ray tube (CRT). In a CRT television, a gun fires a beam of electrons (negatively-charged particles) inside a large glass tube. The electrons excite phosphor atoms along the wide end of the tube (the screen), which causes the phosphor atoms to light up. The television image is produced by lighting up different areas of the phosphor coating with different colors at different intensities (see How Televisions Work for a detailed explanation).
Cathode ray tubes produce crisp, vibrant images, but they do have a serious drawback: They are bulky. In order to increase the screen width in a CRT set, you also have to increase the length of the tube (to give the scanning electron gun room to reach all parts of the screen). Consequently, any big-screen CRT television is going to weigh a ton and take up a sizable chunk of a room.
A new alternative has popped up on store shelves: the plasma flat panel display. These televisions have wide screens, comparable to the largest CRT sets, but they are only about 6 inches (15 cm) thick. In this article, we'll see how these sets do so much in such a small space.

Advantages

  • Slim profile
  • Can be wall mounted
  • Less bulky than rear-projection televisions
  • Produces deep blacks allowing for superior contrast ratio
  • Wider viewing angles than those of LCD; images do not suffer from degradation at high angles unlike LCDs
  • Less susceptible to reflection glare in bright rooms due to not needing backlighting
  • Virtually no motion blur, thanks in large part to very high refresh rates and a faster response time, contributing to superior performance when displaying content with significant amounts of rapid motion

Disadvantages

  • Heavier screen-door effect when compared to LCD or OLED based TVs
  • Susceptible to screen burn-in and image retention, although most recent models have a pixel orbiter that moves the entire picture faster than is noticeable to the human eye, which reduces the effect of burn-in but does not prevent it. However, turning off individual pixels does counteract screen burn-in on modern plasma displays.
  • Phosphors lose luminosity over time, resulting in gradual decline of absolute image brightness (newer models are less susceptible to this, having lifespans exceeding 100,000 hours, far longer than older CRT technology)
  • Susceptible to "large area flicker"
  • Generally do not come in smaller sizes than 37 inches
  • Heavier than LCD due to the requirement of a glass screen to hold the gases
  • Use more electricity, on average, than an LCD TV
  • Do not work as well at high altitudes due to pressure differential between the gases inside the screen and the air pressure at altitude. It may cause a buzzing noise. Manufacturers rate their screens to indicate the altitude parameters.
  • For those who wish to listen to AM radio, or are Amateur Radio operators (Hams) or Shortwave Listeners (SWL) , the Radio Frequency Interference (RFI) from these devices can be irritating or disabling.


How plasma displays work

A plasma display panel is an array of hundreds of thousands of small, luminous cells positioned between two plates of glass. Each cell is essentially a tiny neon lamp filled with rarefied neon, xenon, and other inert gases; the cells are luminous when they are electrified through "electrodes".
The long electrodes are stripes of electrically conducting material that also lie between the glass plates, in front of and behind the cells. The "address electrodes" sit behind the cells, along the rear glass plate, and can be opaque. The transparent display electrodes are mounted in front of the cell, along the front glass plate. As can be seen in the illustration, the electrodes are covered by an insulating protective layer. Control circuitry charges the electrodes that cross paths at a cell, creating a voltage difference between front and back. Some of the atoms in the gas of a cell then lose electrons and become ionized, which creates an electrically conducting plasma of atoms, free electrons, and ions. The collisions of the flowing electrons in the plasma with the inert gas atoms leads to light emission; such light-emitting plasmas are known as glow discharges.
In a monochrome plasma panel, the gas is usually mostly neon, and the color is the characteristic orange of a neon-filled lamp (or sign). Once a glow discharge has been initiated in a cell, it can be maintained by applying a low-level voltage between all the horizontal and vertical electrodes–even after the ionizing voltage is removed. To erase a cell all voltage is removed from a pair of electrodes. This type of panel has inherent memory. A small amount of nitrogen is added to the neon to increase hysteresis.

In color panels, the back of each cell is coated with a phosphor. The ultraviolet photons emitted by the plasma excite these phosphors, which give off visible light with colors determined by the phosphor materials. This aspect is comparable to fluorescent lamps and to the neon signs that use colored phosphors.
Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel, the same as a triad of a shadow mask CRT or color LCD. Plasma panels use pulse-width modulation (PWM) to control brightness: by varying the pulses of current flowing through the different cells thousands of times per second, the control system can increase or decrease the intensity of each subpixel color to create billions of different combinations of red, green and blue. In this way, the control system can produce most of the visible colors. Plasma displays use the same phosphors as CRTs, which accounts for the extremely accurate color reproduction when viewing television or computer video images (which use an RGB color system designed for CRT display technology).



 

No comments: